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Minimum Kullback entropy approach to the Fokker-Planck equation
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We consider a minimum Kullback entropy approach to determine approximate, time-dependent solutions to
the N-dimensional Fokker-PlandEP) equation. It is shown that the ensuing approximate solutions to the FP
equation can be derived from a variational principle. We prove that the functional relation between the time
derivative of the entropy, on the one hand, and the approxiftiate-dependentdistribution functions, on the
other, has the same form as that correspondingxectsolutions to the FP equation. Other properties of the
approximate Kullback solutions and some particular examples are also disdi&5k@63-651X97)04010-5

PACS numbd(s): 05.45+b, 05.30—d

I. INTRODUCTION the time evolution of just a small number of relevant mean
values. With recourse to a maximum entropy ansatz for the

reformulation of statistical mechanic2—8] greatly in- probability distribution, a closed set of ordinary differential

creased its power and scope. Jaynes provided a general ppéquqtions governing the evolution of these mean values is
scription for the construction of a probability distribution OPtained11. _
f(x) (xe RN stands for a point in the relevant phase space 1 ne aforementioned maximum entropy scheme has been
when the only available information about the system con@PPlied to a variety of physical situations. In the case of the
sists of the mean values ™ quantities Liouville _equ_atlon(or von Neumann'’s in the quantum c:ase _
for Hamiltonian systems, the method has been studied in
great detail[18—26. However, the ideas of statistical me-
(Ar(X)>EI A f(x)dx  (r=1,...M). (1) chanics can be applied to more general dynamical systems
relevant in diverse areas of physics and theoretical biology.
According to Jaynes, the least biased distribution compatibl&ecently, two of us showed that the maximum entropy for-
with the data(1) is the one that maximizes Shannon’s infor- malism can be generalized to statistically treat the whole
mation measure, family of dynamical systems with divergenceless phase-
space flows[11]. Hick and Steveng12] (HS) studied
Jaynes’s method for obtaining approximate solutions to dif-
E_J f(x)Inf(x)dx, (2 fusionlike and Fokker-Planck equations. They applied such
an approach to an important astrophysical problem, the cos-
under the constraints imposed by the mean vallieand the  mic ray transport equation, and obtained remarkably good
appropriate normalization condition numerical results. Baker-Jarvis, Racine, and Alameddine
[13] have applied Jaynes’s techniques to some simple ex-
amples of the Fokker-Planck equation.
f fOodx=1. (3) A drawback of Jaynes’s information theory approach for
obtaining approximate solutions of differential equations is
Jaynes’s information theory approach allows us to considethat it is very difficult to quantitatively ascertain the accuracy
more general statistical ensembles than the Gibbs microcaf the approximate results obtained. This regrettable situa-
nonical, canonical, and macrocanonical ensemf#igsAlso,  tion arises whenever one deals with approximate treatments
it provides a natural way to treat nonequillibrium situationsdevised on the basis of some variational principle: Given an
[9,10. appropriate ansatz, the principle always provides a solution
The maximum entropy principle can be applied to findwhose quality depends on the details of the particular case.
approximate solutions of partial differential equations gov-HS suggested that in the case of the maximum entropy
erning the time evolution of distribution functions, such asmethod, since the procedure implies maximizing the entropy
the Liouville equation[11], the Fokker-Planck equation (subject to certain constraintsone can expect it to be par-
[12,13, and the von Neumann equation in quantum mechanticularly useful in problems where the entropy of the real
ics [14—17. The general idea of this approach is to follow solution can be shown to verify ad theorem(i.e., to be a
monotonically increasing function of timeT his is what hap-
pens in the case of diffusionlike equations. Solutions of the
*Permanent address: Facultad de Ciencias Asinizas y Geoik  more general Fokker-Plan¢kP) equation, however, do not
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This suggests that it would be worthwhile to consider a more B. Kullback's relative information measure
general maximum entropy formalism for solving approxi-
mately the FP equation, based on the extremalization of
Kullback relative information entropy.

The aim of the present effort is to consider a minimum Q[f(X)|fo(X)]Ef f(x)In
Kullback entropy scheme in order to approximately solve the

generalN-dimensional FP equation. Our motivat_ion i; two- \yas originally introduced by Kullback?8] and can be re-
fold. On the one hand, the present formalism will unify andyarged as statistical distance between two probability dis-
generalize some previous results that already exist in the l”fributions[29—3]]. If we takef, to be theuniform probabil-

erature. On the other hand, we will analytically prove SOM&yy distribution one immediately findg28]
properties of the maximum entropy solution of the FP equa-

tion, giving insights into a method whose validity has so far Q[f|fo]=const-S, (11)
come mostly from the analysis of humerical examples.

‘The paper is organized as follows. In Sec. Il we give ayhereS stands for Shannon’s measyid. Thus minimizing
brief review of some properties of the FP equation and th@he Kullback distance is tantamount to maximizigg In
Kullback information measure. In Sec. Ill we introduce awhat follows it will prove convenient to work with a quantity

variational principle for the solution of the FP equation, from equal tominusthe Kullback distance. Thus we seind shall
which our approximate solutions can be derived. The mainsxclusively use here from

properties of the Kullback’s extremalization approach to the
FP equation are discussed in Sec. IV. Some important par- K[ fq]f2]=—Q[f4|f5]. (12)
ticular cases are considered in Sec. V. Our main conclusions
are drawn in Sec. VI. If we have a prior bias towards the distributidg(x), a
reasonable prescription for statistical infereri@8] is to
Il. THE FOKKER-PLANCK EQUATION adopt the distribution that minimizes Kullback’s information
AND KULLBACK'S INFORMATION MEASURE (maximizes Kf|f,]) under the constraints imposed by nor-
malization and the relevant mean valiés That minimum
Kullback entropy distribution is given bj6]

The relative information measuf@[ f|f,],
f(x)
fo(x)

dx, (10

A. The Fokker-Planck operator
The N-dimensional FP equation can be cas{2ig|

M
1
IW(X,t fuk(X)==fo(x)exp — NA(X) ], 13
;t ) 1w, @ k()= 7 fo(x)exp| = 2, AeA(X) (13
where{\, ,r=1,... M} are theM Lagrange multipliers as-

whereW(x,t) is a time-dependent normalized density func-

tion sociated with the known mean values and the partition func-

tion Z is given by

f W(x,t)dx=1, (5) M
ZEJ fo(x)exp( — 21 )\rA,(x)> dx. (14

=
X is a vector belonging t&N, and the FP differential opera-
tor Lgp is given, in terms of a drift vectov, with compo-  Of course, if we have no prior information at all, Kullback’s
nentsD;(x) and of a diffusion tensob with components inference principle yields the distributiciy(x). Kullback’s
Dij(x), by (Einstein convention employgd approach is a straightforward generalization of Jaynes’s pre-
scription to the case where an initial, nonuniform distribution
fo(x) is available. The relevant mean valugs;) and the
concomitant Lagrange multipliers; are connected by the

well-known relation
The matrix{D;;} is assumed to be symmetric and positive

(92

d
LFP:_KDi(X)"_mDij(X)- (6)
i jOXj

definite, i.e., IK \ 15
oAy M
DijUiUJ'BO, (7) < I>
for all vectorsve RN. The adjoint operator_;gp is C. Time derivative of Kullback’s relative entropy
P 2 Given two distributiondV/ andW,, whereW is a solution
LEP: Di(X) 7 +Dij(X) o ®) of thg FP equation andy, is ar} arb|tr§1ry prior d|§tr|byt|on,
IX; IX;IX; the time derivative of Kullback’s relative entropy is given by
Given two probability distributiondV,; and W,, the opera- dK W IWo[ W
torsLgp andL [, verify dt (LepW)in W, dx-+ at |W, dx. (16)

In the particular case whel#, is itself a solution to the FP
_ T 0
f WlLFP[WZ]dX_f Wal gp[ Wi ]dx. © equation, it can be shown thg27]
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dK IWS d an
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b W\ oW q
w2~ ax;\ Wo) ox;\ Wo X
and sinceD;; is assumed to be a positive definite matrix

dK 0
—=
dt '

(18)
which constitutes ail theorem for the FP equatid27].

Ill. VARIATIONAL PRINCIPLE

We introduce now an appropriate variational principle for

the FP equation, using an auxiliary quantify{x,t). The

variational principle should provide us with equations of mo-
tion for both W and A. The idea of introducing auxiliary
guantities is commonly employed in order to formulate
variational principles leading to various important evolution
equations of mathematical physi@&2]. We start by devising

a suitable action for the FP equation,

ty AW ty
|=J' dtJ dX[——LFpW]A(X,t)-I-f D[W]dt
ty at 53

- f W(XltZ)A(X!tZ)dxv (19)

where the functionaD[ W] is defined as
D[W]= fLWle J'(9W0Wd 20
[W]=— ] Lep " W, X+ oW, x. (20)

and W, is an arbitrary prior distribution not necessarily a

solution of the FP equation. Notice thatW(x,t) is anexact
solution of the FP equation, we then have

dK
S~ PIWI. (22)
Let us consider the variational principle
81=0, (22)
with mixed boundary conditions
W(x,t1) =W(X)in (23
and
A(X,t2)=A(X)out- (24)

The above variational principle implies that for arbitrary

variationsSW(x,t) and sA(x,t), we should have

ty oW
f dtj dx W—LFPW 6A=0 (25)
ty
and
tp JA SD[W]
gyt oA =
ﬁldtf dx §t+LFPA SW ]5W 0, (26)
where

3929

SD[W] AREE J(INWp)
S =—LEP[In<WO>]—V—V(LFPW)+ &to

(27)

is the functional derivative ob[W].
From Egs.(25 and (26) we obtain partial differential
equations for bottW(x,t) andA(x,t). Our equations are

IW(X,t)
ot - LFPW(X,t):O, (28)
i.e., the Fokker-Planck equation, and
A Lt 6D[W] o ”
A 29

If we could perform an unrestricted variational procedure
(VP), the exact FP solution would ensueréstrictedVP, on
the other hand, would provide us with approximate FP solu-
tions. We construct now a such a variational ansatz for the
two functionsW(x,t) and A(x,t), expressed in terms d¥l
appropriate functiong\;(x). The ansatz foA is just an(in-
homogeneoyslinear combination of the\;(x),

M
At =ag(ay, ... ,aM)-i—i:El ai(HA(X), (30

while the ansatz fow is a distribution(verifying the appro-
priate normalization and boundary conditipqparametrized
in terms of theM mean valuegA;),

WX, D) =W((AD, .. . {Aw)). (31)

In what follows the mean valug®\;) are regarded as thd
variational parameters characterizing the ansatz \\ér
Hence the two function8 andW are given in terms of a set
of 2M variational parameters

am(Ar)s - (A}

As stated above, the procedure is an approximate one be-
cause the sdB2) is not the most general one could think of.

Introduction of the ansatz foA(x,t) into the variational
equation(25) yields

t2 JW
f dt&ao(t)f dx __LFpW
4 ot

M ty oW
+> dtaai(t)f dx{——LFpW]Ai(x)=0.
i=1Jy ot

{ay, .. (32

(33

Due to both the normalization and the boundary conditions
on W(x,t), the first term in Eq(33) vanishes and since the
Sa;(t) are arbitrary we obtain

d(A;)

g~ (LEeA) (=1, . M). (34)

Furthermore, from the ansat31), the variational equation
(26), and taking into account that the variatioféA;) are
arbitrary, we obtain
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LN dW JD[W] 1 M
J ot TLreA 0<Ai>d><= A (i=1,...M). Wik (x,1) = 5 Wo(x,t)ex —iZl MNOAX) . (42)
(35
It is clear thatWy is determined, at each instant, by the
ReplacingA(x,t) by the ansat230) yields instantaneous values adopted by the relevant mean values
(A), which are taken as constraints in the extremalization of
deg 2 aW K. Hence the approximate minimum entropy solution
f a(A ) dx+ “ Aj (9<A|> Wyk(X,t) is constructed in such a way as to satisfy the equa-

tions of motion (41) of the M relevant mean values. Of

N M course, in this approximate procedure the time evolution de-
+f Lrp ao+21 ajA mdx pends on the temporal behavior of the Lagrange multipliers
= ' \i(t), and we need to ascertain their functional dependence
dD[W] on time.
=AY (36) Furthermore, we have noted above that, in order to de-
velop confidence in the approximate procedures, we need to
while the normalization condition gives ascertain that the temporal evolution of the Kullback entropy
one constructs with the approximate FP solution behaves in
j aW f the correct fashion. We tackle this question first.
— Wdx=0. (37
&<Ai> (9<A ) B. Time derivative of Kullback’'s entropy
It is also clear thatremember that our ansatz f@v is pa- Let us now consider the time derivative of the Kullback
rametrized by theM mean valuegA;)) entropy Kk evaluated on the approximate minimum en-
tropy solutionW,,«(x,t). The time derivative of Kullback
d A relative entropy is given by
—f AWdX=——-=§;; (38
KA oA M
dKMK__j D IWnk d(A;) | (WMK)dX
and dt =) (A  dt W,
thPaO:O' (39 +J’(9_V\/0 WMK) (43)
Wo
Finally, Eq. (36) together with the last equations we have . .
just derived yields equations of motion for the variational WNiCh can be rewritten as
parametersy; , dKyy Mook d(A) f aWO/WMK)dX s
da Mo LIeA)  DIW] dt & o(A) dt ot \ W |
——==2 a (i=1,... M), . o . _
dt j=1 oA H(A) where the partial derivatives of the relative entropy with re-

(40) spect to the mean values are to be taken at fixgdi.e., at
a given time. By recourse to the equations of motion of the

which, together with the equations of moti¢84) for the relevant mean values and the thermodynamic relatioBs
mean values of thé, determine the temporal evolution of £q. (44) can be recast as

bothW andA(x,t). Summing up, starting from a variational

principle that leads to the FP equation, we have obtained an dKuk M
approximate FP solutiolV, ., in terms of the set of pa- at J WMK| Lpp( 2 NiA (X)>
rameterg32).
IWo[ Wik
IV. MINIMUM ENTROPY APPROACH + J 7( W, )dx’ (49

TO THE FP EQUATION

i . which easily leads to
A. The time-dependent minimum entropy ansatz y

We now focus our attention upon a particular parametri- dKMK M _
zation of the probability distributioW in terms ofM rel- dt (LecWwk) _;1 AiAi(X) | +In(Z77) jdx
evant mean values. The time evolution of a seMofppro-
priate relevant mean valués,) is given by IWo[ Wk
— (46)

q at | W,

—_— H = T . i =

dt<A'> (LepA) (=1, M). “D From the form of the maximum entropy ansatz, it is now

clear that the time derivative of the relative entropy, evalu-
We will evaluate the right-hand side of the above equa-ated on the minimum entropy approximate solutibf , is
tions by employing the Kullback minimum entropy ansatz given by
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dKuk Wk IWo [ Wik identicalto the one obtained in Sec. Ill from the action varia-
at Z—J (LepWwi)In| (= d JT W, /9 tional principle if we identify the parameters; with the

Lagrange multipliers,; .
=D[Wuk]- (47)
D. Hamiltonian structure

We see that the functional relation between the time de-
rivative of K and the approximate minimum entropy solution
Wk is exactly the same as that of the time derivative of the HA 1y oo A (AD, - (A
relative entropy in terms of aexactsolution of the FP equa-
tion [see Eq(16)]. In the special case of a prior distribution M +
W,y (x,t), which is an exact solution of the FP equation, this :2’1 Ni(LEpA)) = DIW((Ay), ... (Au))],  (5D)
result has the important consequence that minimum en-

tropy ansatz VMK(>§,t) verifies the same H theorem satisfied (o equations of motion for the relevant mean val(iag
by the exact solutian and for the corresponding Lagrange multiplievs can be
cast into the Hamiltonian form

Defining the Hamiltonian

C. Equations of motion for the Lagrange multipliers

d(A)

The equations of motion for thi®l Lagrange multipliers QZ_H (52

\; are dt A

N _ s N dA) N and

dt = a(A) dt ot a o
2T (53

_2’“': N dA) AN {% \ d(AJ-)] dt — a(A)

SaA) dt gt (A=) dt We see that the relevant mean values and the Lagrange mul-

M + tipliers are conjugate variables not only in Jaynes’s thermo-

_2 _‘9<LFPAJ> +‘9_7\i (48) dynamical sense, but also in a Hamiltonian sense. In the
= oA at’ definition of the Hamiltonian(51), the quantities(L}pA;)

andD[W] are regarded as functions of the relevant mean

where the partial derivatives with respect to the mean valuegalues. Furthermore, the relevant mean val(&s and the

(A;) are evaluated at fixew/, (i.e., at a given timg while ~ Lagrange multipliers\; are regarded as independent vari-

the partial time derivatives of the Lagrange multipliers areables. However, of all the possible solutions

taken at fixed values of thel moments(A;) (i.e., they de-

scribe the changes in thes due to the explicit time depen- (AN} (1=1,... M), (54)

dence of the prior distributiod/y(x,t); this time dependence o i .

implies that thex’s will change even if the relevant moments ©f the Hamiltonian equation&?2) and(53), only those with

remain fixed. initial conditions satisfying the relations
With the same conventions for the partial derivatives we M
have _
<Ai>(to):f Ai(x)Z lexl{ _Zl )\i(to)Ai(X))
AD[Wyi] _ 9 [dKyk] [% Nd<Aj> LN _
HAY AN dt T aAp A de | et (i=1...M) (59
(49)

are relevant to our problem. The relatiof®) determine an
From the above expressions we arrive at the equations d\fl-dlmensmnal hypersurface gmbgded in_thi '.ﬂ'me”'
: ) sional phase space of our Hamiltonian system. It is clear that
motion for the\’s ; ) . . X
this hypersurface is an invariant set of the equations of mo-
M + tion (52) and(53). This means that a solution to these equa-
N 3 HLepA)) N ID[ W] (50) tions with initial conditions on this hypersurface wil always
dt = A KA remain on that subset of the phase space.

We can see that these equations of motion for the Lagrange V. PARTICULAR CASES
multipliers coincidewith the equations of motio0) for the
parametersy; , derived from the variational principle based
on the action(19). If we take as the prior distribution the uniform probability

Summing up, we tried to build an approximate minimum distribution, the relative Kullback measure redu¢es to an
entropy approach to the FP equation based upon the idea aflditive constantto the usual Gibbs-Shannon-Jaynes en-
approximately closing the set of equatigdd) with the help  tropy. As observed above, our approach should in this case
of the minimum entropy forn{42). We find that this Kull-  translate itself into the one provided by Jaynes’s maximum
back minimum entropy ansatz for the distribution function isentropy principle(MEP) (as applied to the FP equatjon

A. Gibbs-Shannon-Jaynes entropy
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Here we make the connection with the approximate maxi- Note that the Liouville equatio(b8) is more general than
mum entropy scheme proposed by Hick and Stey&@kto  the one presented in most textbooks of classical mechanics.
deal with the FP equation and, in particular, with the cosmid_iouville’s equation is usually associated with Hamiltonian
ray transport equation. Their approach is seen to constitute systems, but the equation originally introduced by Liouville
particular instance of the one advanced in the present papdB3] is of the form(58), and corresponds to a more general
Including convection and pitch angle scattering, the cosmisituation and applies to arbitrary dynamical systems. Hamil-
ray transport equatiofil2] in a (spatially one-dimensional tonian systems belong to the family of dynamical systems
geometry is with divergenceless phase space flows

af 1 4
=T,
a 2 du

d V-Vp=0, (61
(A=p?)g = pv o (56) °
in which case the Liouville equation adopts the form
wheref(x,u,t) is the particle distribution function; is the

particle velocity,u=v - X is the cosine of the pitch angle, and
v is the scattering frequency.

HS have obtained numerical results that clearly show that
the maximum entropy approach can profitably be employed.
They argue that the success of the method can be partial&
justified by the fact that, for exact solutiofiéx, u,t) of the
transport equation, it can be shown that

JW(X,t)
T+VD'VW: 0. (62
The study of the general Liouville equation is important
order to apply the ideas of statistical mechanics to non-

amiltonian system$34-37,39. In particular, two of us

have recently shown that Jaynes’s approach to statistical me-

chanics can be applied to general dynamical systems with

dS 1 [+ t1 1—p?( of |2 divergenceless flows in phase spddd]. In addition to

—= —yf dxf du ( ) 0, (57) Hamiltonian systems, this family encompasses other interest-

dt 2" ) -1 ing cases, such as Nambu syste[38] and Bialynicky-

, , ) ) , Birula—Morrison dynamical systemgtQ0]. Our present re-

so that the entrops is a monotonically increasing function gjis in the particular case of vanishing diffusion tensor,

of time. _ _ o imply that the maximum entropy approach can be applied to
From our analysis of the time derivative of Kullback's ggye approximately the Liouville equation for general dy-

information it follows that, in the particular case of Shan- 5mical systems, even if they have a nonvanishing phase
non’s entropythe functional relation between d@& and the o\ divergence.

distribution function is, for the MEP solution, the same as
for the exact solutionin particular, we proved in analytical
fashion that, if the exact solutions satisfy ldrntheorem(i.e.,
the entropy is a monotonically increasing function of tjme
then the maximum entropy solutions verifidse same H Our maxent approach to the FP equation simplifies con-
theorem Concrete and tangible analytical support for the HSsiderably in the case that the mean valgegpA;) can be
argument, which was based primarily on numerical evidencegexpressed as a linear combination of the relevant mean val-
is thus provided by the present considerations. ues(A;),

I

C. Closed linear equations of motion
for the relevant mean values

M
B. Generalized Liouville equation <LLPAi>: Z gi(A) (i=1,...M). (63)
If the diffusion tensof D;;(x)} vanishes, the FP equation =1

reduces to the Liouville equation .
In such cases, the relevant mean values evolve according to a

IW(X1) Mo IW(X,) closed linear system of ordinary differential equations
——+2> —[WD;(x)]= ———+V-(WVp)=0, "
ot =1 9% ot d<Ai> _
(58) — =2 GiA) (=1, M) (64)
dt =1
where , .
that can be solveth an exact fashionSuch a closure rela-
J 9 tion holds, for example, if we have a linear drift
V:(——) (59
0)(1 &XN N

N . Di(x) =2, alx;+a’, (65
stands for theN-dimensional nabla symbol. The above Liou- i=1

ville equation describes the time evolution of a statistical S

ensemble of identical dynamical systems, each evolving ac quadratic diffusion tensor

cording to a flux in phase space given by the vector field

N N
Vp(X). The time evolution of each member of the ensemble B Kl K 0
is given by the system of ordinary differential equations Dii(x)_kzl bij ka|+k21 Cij Xkt Cij » (66)
dx and we chose as relevant mean values the set of linear and
—==Vp(X). (60)

dt guadratic moments
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structure, the latter being canonical conjugate to the former.
We proved that the functional relation between the time
derivative of the Kullback entropy and the approximate
minimum entropy solution is the same as in the case of the
An interesting possibility is that of choosing as the prior exact solutions. Hence, whenever the exact solutit/(is,t)
distribution a particular known solutioWy(x,t) of the FP  satisfy anH theorem[with respect to the prior distribution
equation. In that case, the time derivative of the entr@dy W, (x,t)], the minimum entropy solution®/y,«(x,t) satisfy
the approximate maxent solutidhly, k) is the same H theorem
In the particular case of diffusionlike equations, the
Gibbs-Shannon-Jaynes entropy is a monotonically increasing
function of time. If within our scheme a constant prior dis-
(68) tribution is used, we obtain approximatiaynes MEP solu-
tions with the same property. Thus it is here asserted(that
we analytically proved that the entropy of the approximate
MEP solutions considered by Hick and Stevens for the cos-
mic ray transport equation increases with time afiid
dS/dt, expressed in terms of the MEP solutidf, g(x,t), is
given by an expression identical to that corresponding to the
exact solutions.
dK In the general case of the FP equation, the Gibbs-
MK~ 0 (70) Shannon-Jaynes entropy does (intgeneral behave mono-
dt tonically with time. However, the time derivative of the
Kullback relative entropy between two solutions of the FP
equation has a definite signe., it obeys arH theoren. If
within our minimum entropy scheme we adopt as a prior
distribution a known solution of the FP equation, then the
(Kullback) minimum entropy approximate solution will
verify the sameH theorem.
VI. CONCLUSION In the particular case of a vanishing diffusion tensor, the
In the present effort we have considered a minimum enFP equation reduces to the general Liouville equation de-
tropy approach to obtain approximate, time-dependent SO|us_cr|b|ng the evolutlor_l of a statlstl_cz_il_ ensemt_)l_e of identical
tions to theN-dimensional Fokker-Planck equation, in the dynamical systemgwith different initial conditions. In a
general context of Kullback’s relative entropy. This methodPrevious work two of us showed that Jaynes'’s approach can
has been applied previously for solving the Liouville equa_be implemented in the case of dynamlc.:all systems with diver-
tion for Hamiltonian systems and recently generalized to th§€nceless flows. The present effort, within the framework of
family of dynamical systems with divergenceless phaselullback’s minimum entropy principle, generalizes those re-
space flow, albeit employing only the Gibbs-Shannon-JayneSUlts to the case of arbitrary dynamical systems.
entropy. Some particular applications of Jaynes’'s MEP ap-  Summing up, the present considerations unify and gener-
proach to the FP equation have also been discussed in ti#iZ€ previous work related to the information theory ap-
literature. In particular, the method has been successfully ag2roach to the Liouville and FP equations. Numerical appli-
plied to the cosmic ray transport equation. However, thi§_at|ons of this method to p_artlt_:ular mstan_ces exist in _the
approach to the FP equation has so far been justified only offérature. In the case of Liouville’s equation, for Hamil-
the basis of the analysis of particular numerical examples. fonian and divergenceless dynamical systems, some analyti-
the present paper we have provided, within the context of &2/ results are also available. We have extended all these
minimum Kullback information approach, some general analesults to theN-dimensional Fokker-Planck equation, within
lytical results that hold even if we employ the Gibbs- the mqre.general framework of Kullback’s minimum entropy
Shannon-Jaynes entropy since the latter is nothing more thatf€scription.
a particular case of the more general Kullback one.
We have shown that the minimum Kullback approach can
be derived from a variational principle and we obtained the
equations of motion for the Lagrange multipliers associated The financial support of the Foundation for Research De-
with the relevant mean values. We have also shown that theelopment is gratefully acknowledged. A.P. gratefully ac-
equations of motion for the relevant mean values and th&nowledges partial support from Argentina’s National Re-
concomitant Lagrange multipliers exhibit a Hamiltonian search Counci{CONICET).

<Xi>,<Xin> (i,jzl, e ,N) (67)

D. Exact solution as prior distribution

dKwik Wik
dar _j LFPWMKIn(WO

w
MK)dX'

dX+J LFPWO W
0

which after some algebra can be put in the form

WM K
Wo

Wo

IXj

dKMK:j\NﬁAK d dx. (69)

dt W2 T ax;

WMK) d

If the diffusion tensor is not zero we have

sinceD;; is a positive-definite matrix. For the FP equation, a
natural choice for the prior distribution is a stationary solu-
tion Wq(x), which usually is easier to obtain than a particular
time-dependent solution.
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