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Minimum Kullback entropy approach to the Fokker-Planck equation
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We consider a minimum Kullback entropy approach to determine approximate, time-dependent solutions to
the N-dimensional Fokker-Planck~FP! equation. It is shown that the ensuing approximate solutions to the FP
equation can be derived from a variational principle. We prove that the functional relation between the time
derivative of the entropy, on the one hand, and the approximate~time-dependent! distribution functions, on the
other, has the same form as that corresponding toexactsolutions to the FP equation. Other properties of the
approximate Kullback solutions and some particular examples are also discussed.@S1063-651X~97!04010-5#

PACS number~s!: 05.45.1b, 05.30.2d
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I. INTRODUCTION

Inspired by Shannon’s information theory@1#, Jaynes’s
reformulation of statistical mechanics@2–8# greatly in-
creased its power and scope. Jaynes provided a genera
scription for the construction of a probability distributio
f (x) (xPRN stands for a point in the relevant phase spac!,
when the only available information about the system c
sists of the mean values ofM quantities

^Ar~x!&[E Ar~x! f ~x!dx ~r 51, . . . ,M !. ~1!

According to Jaynes, the least biased distribution compat
with the data~1! is the one that maximizes Shannon’s info
mation measure,

S[2E f ~x!lnf ~x!dx, ~2!

under the constraints imposed by the mean values~1! and the
appropriate normalization condition

E f ~x!dx51. ~3!

Jaynes’s information theory approach allows us to cons
more general statistical ensembles than the Gibbs micr
nonical, canonical, and macrocanonical ensembles@9#. Also,
it provides a natural way to treat nonequillibrium situatio
@9,10#.

The maximum entropy principle can be applied to fi
approximate solutions of partial differential equations go
erning the time evolution of distribution functions, such
the Liouville equation @11#, the Fokker-Planck equatio
@12,13#, and the von Neumann equation in quantum mech
ics @14–17#. The general idea of this approach is to follo
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the time evolution of just a small number of relevant me
values. With recourse to a maximum entropy ansatz for
probability distribution, a closed set of ordinary differenti
equations governing the evolution of these mean value
obtained@11#.

The aforementioned maximum entropy scheme has b
applied to a variety of physical situations. In the case of
Liouville equation~or von Neumann’s in the quantum cas!
for Hamiltonian systems, the method has been studied
great detail@18–26#. However, the ideas of statistical me
chanics can be applied to more general dynamical syst
relevant in diverse areas of physics and theoretical biolo
Recently, two of us showed that the maximum entropy f
malism can be generalized to statistically treat the wh
family of dynamical systems with divergenceless pha
space flows @11#. Hick and Stevens@12# ~HS! studied
Jaynes’s method for obtaining approximate solutions to
fusionlike and Fokker-Planck equations. They applied su
an approach to an important astrophysical problem, the c
mic ray transport equation, and obtained remarkably go
numerical results. Baker-Jarvis, Racine, and Alamedd
@13# have applied Jaynes’s techniques to some simple
amples of the Fokker-Planck equation.

A drawback of Jaynes’s information theory approach
obtaining approximate solutions of differential equations
that it is very difficult to quantitatively ascertain the accura
of the approximate results obtained. This regrettable sit
tion arises whenever one deals with approximate treatm
devised on the basis of some variational principle: Given
appropriate ansatz, the principle always provides a solu
whose quality depends on the details of the particular ca
HS suggested that in the case of the maximum entr
method, since the procedure implies maximizing the entro
~subject to certain constraints!, one can expect it to be par
ticularly useful in problems where the entropy of the re
solution can be shown to verify anH theorem~i.e., to be a
monotonically increasing function of time!. This is what hap-
pens in the case of diffusionlike equations. Solutions of
more general Fokker-Planck~FP! equation, however, do no
behave in this way. In order to obtain anH theorem for the
FP equation@27#, it is necessary to employ the relative Kul
back@28# entropy between two time-dependent solutions
stead of the Shannon entropy involving just one soluti
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This suggests that it would be worthwhile to consider a m
general maximum entropy formalism for solving appro
mately the FP equation, based on the extremalization
Kullback relative information entropy.

The aim of the present effort is to consider a minimu
Kullback entropy scheme in order to approximately solve
generalN-dimensional FP equation. Our motivation is tw
fold. On the one hand, the present formalism will unify a
generalize some previous results that already exist in the
erature. On the other hand, we will analytically prove so
properties of the maximum entropy solution of the FP eq
tion, giving insights into a method whose validity has so
come mostly from the analysis of numerical examples.

The paper is organized as follows. In Sec. II we give
brief review of some properties of the FP equation and
Kullback information measure. In Sec. III we introduce
variational principle for the solution of the FP equation, fro
which our approximate solutions can be derived. The m
properties of the Kullback’s extremalization approach to
FP equation are discussed in Sec. IV. Some important
ticular cases are considered in Sec. V. Our main conclus
are drawn in Sec. VI.

II. THE FOKKER-PLANCK EQUATION
AND KULLBACK’S INFORMATION MEASURE

A. The Fokker-Planck operator

The N-dimensional FP equation can be cast as@27#

]W~x,t !

]t
5LFPW~x,t !, ~4!

whereW(x,t) is a time-dependent normalized density fun
tion

E W~x,t !dx51, ~5!

x is a vector belonging toRN, and the FP differential opera
tor LFP is given, in terms of a drift vectorVD with compo-
nentsDi(x) and of a diffusion tensorD with components
Di j (x), by ~Einstein convention employed!

LFP52
]

]xi
Di~x!1

]2

]xi]xj
Di j ~x!. ~6!

The matrix $Di j % is assumed to be symmetric and positi
definite, i.e.,

Di j v iv j>0, ~7!

for all vectorsvPRN. The adjoint operatorLFP
† is

LFP
† 5Di~x!

]

]xi
1Di j ~x!

]2

]xi]xj
. ~8!

Given two probability distributionsW1 and W2, the opera-
tors LFP andLFP

† verify

E W1LFP@W2#dx5E W2LFP
† @W1#dx. ~9!
e
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B. Kullback’s relative information measure

The relative information measureQ@ f u f 0#,

Q@ f ~x!u f 0~x!#[E f ~x!lnF f ~x!

f 0~x!Gdx, ~10!

was originally introduced by Kullback@28# and can be re-
garded as astatisticaldistance between two probability dis
tributions@29–31#. If we take f 0 to be theuniformprobabil-
ity distribution one immediately finds@28#

Q@ f u f 0#5const2S, ~11!

whereS stands for Shannon’s measure@6#. Thus minimizing
the Kullback distance is tantamount to maximizingS. In
what follows it will prove convenient to work with a quantit
equal tominusthe Kullback distance. Thus we set~and shall
exclusively use here from!

K@ f 1u f 2#52Q@ f 1u f 2#. ~12!

If we have a prior bias towards the distributionf 0(x), a
reasonable prescription for statistical inference@28# is to
adopt the distribution that minimizes Kullback’s informatio
~maximizes K@ f u f 0#) under the constraints imposed by no
malization and the relevant mean values~1!. That minimum
Kullback entropy distribution is given by@5#

f MK~x!5
1

Z
f 0~x!expS 2(

r 51

M

l rAr~x!D , ~13!

where$l r ,r 51, . . . ,M % are theM Lagrange multipliers as-
sociated with the known mean values and the partition fu
tion Z is given by

Z[E f 0~x!expS 2(
r 51

M

l rAr~x!D dx. ~14!

Of course, if we have no prior information at all, Kullback
inference principle yields the distributionf 0(x). Kullback’s
approach is a straightforward generalization of Jaynes’s
scription to the case where an initial, nonuniform distributi
f 0(x) is available. The relevant mean values^Ai& and the
concomitant Lagrange multipliersl i are connected by the
well-known relation

]K

]^Ai&
5l i . ~15!

C. Time derivative of Kullback’s relative entropy

Given two distributionsW andW0, whereW is a solution
of the FP equation andW0 is an arbitrary prior distribution,
the time derivative of Kullback’s relative entropy is given b

dK

dt
52E ~LFPW!lnS W

W0
Ddx1E ]W0

]t S W

W0
Ddx. ~16!

In the particular case whereW0 is itself a solution to the FP
equation, it can be shown that@27#
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56 3929MINIMUM KULLBACK ENTROPY APPROACH TO THE . . .
dK

dt
5E W3

W0
2

Di j

]

]xi
S W

W0
D ]

]xj
S W

W0
Ddx ~17!

and sinceDi j is assumed to be a positive definite matrix

dK

dt
>0, ~18!

which constitutes anH theorem for the FP equation@27#.

III. VARIATIONAL PRINCIPLE

We introduce now an appropriate variational principle
the FP equation, using an auxiliary quantityA(x,t). The
variational principle should provide us with equations of m
tion for both W and A. The idea of introducing auxiliary
quantities is commonly employed in order to formula
variational principles leading to various important evoluti
equations of mathematical physics@32#. We start by devising
a suitable action for the FP equation,

I 5E
t1

t2
dtE dxH ]W

]t
2LFPWJ A~x,t !1E

t1

t2
D@W#dt

2E W~x,t2!A~x,t2!dx, ~19!

where the functionalD@W# is defined as

D@W#52E LFPW lnS W

W0
Ddx1E ]W0

]t S W

W0
Ddx. ~20!

and W0 is an arbitrary prior distribution not necessarily
solution of the FP equation. Notice that ifW(x,t) is anexact
solution of the FP equation, we then have

dK

dt
5D@W#. ~21!

Let us consider the variational principle

dI 50, ~22!

with mixed boundary conditions

W~x,t1!5W~x! in ~23!

and

A~x,t2!5A~x!out . ~24!

The above variational principle implies that for arbitra
variationsdW(x,t) anddA(x,t), we should have

E
t1

t2
dtE dxH ]W

]t
2LFPWJ dA50 ~25!

and

E
t1

t2
dtE dxH ]A

]t
1LFP

† A2
dD@W#

dW J dW50, ~26!

where
r

-

dD@W#

dW
52LFP

† H lnS W

W0
D J 2

1

W
~LFPW!1

]~ lnW0!

]t
~27!

is the functional derivative ofD@W#.
From Eqs.~25! and ~26! we obtain partial differential

equations for bothW(x,t) andA(x,t). Our equations are

]W~x,t !

]t
2LFPW~x,t !50, ~28!

i.e., the Fokker-Planck equation, and

]A

]t
1LFP

† A2
dD@W#

dW
50. ~29!

If we could perform an unrestricted variational procedu
~VP!, the exact FP solution would ensue. ArestrictedVP, on
the other hand, would provide us with approximate FP so
tions. We construct now a such a variational ansatz for
two functionsW(x,t) and A(x,t), expressed in terms ofM
appropriate functionsAi(x). The ansatz forA is just an~in-
homogeneous! linear combination of theAi(x),

A~x,t !5a0~a1 , . . . ,aM !1(
i 51

M

a i~ t !Ai~x!, ~30!

while the ansatz forW is a distribution~verifying the appro-
priate normalization and boundary conditions! parametrized
in terms of theM mean valueŝAi&,

W~x,t !5W~^A1&, . . . ,̂ AM&!. ~31!

In what follows the mean valueŝAi& are regarded as theM
variational parameters characterizing the ansatz forW.
Hence the two functionsA andW are given in terms of a se
of 2M variational parameters

$a1 , . . . ,aM ,^A1&, . . . ,̂ AM&%. ~32!

As stated above, the procedure is an approximate one
cause the set~32! is not the most general one could think o

Introduction of the ansatz forA(x,t) into the variational
equation~25! yields

E
t1

t2
dtda0~ t !E dxH ]W

]t
2LFPWJ

1(
i 51

M E
t1

t2
dtda i~ t !E dxH ]W

]t
2LFPWJ Ai~x!50.

~33!

Due to both the normalization and the boundary conditio
on W(x,t), the first term in Eq.~33! vanishes and since th
da i(t) are arbitrary we obtain

d^Ai&
dt

5^LFP
1 Ai& ~ i 51, . . . ,M !. ~34!

Furthermore, from the ansatz~31!, the variational equation
~26!, and taking into account that the variationsd^Ai& are
arbitrary, we obtain
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E S ]A

]t
1LFP

† AD ]W

]^Ai&
dx5

]D@W#

]^Ai&
~ i 51, . . . ,M !.

~35!

ReplacingA(x,t) by the ansatz~30! yields

da0

dt E ]W

]^Ai&
dx1(

j 51

M
da j

dt E Aj

]W

]^Ai&
dx

1E FLFP
† S a01(

j 51

M

a jAj D G ]W

]^Ai&
dx

5
]D@W#

]^Ai&
, ~36!

while the normalization condition gives

E ]W

]^Ai&
dx5

]

]^Ai&
E Wdx50. ~37!

It is also clear that~remember that our ansatz forW is pa-
rametrized by theM mean valueŝAi&)

]

]^Ai&
E AjWdx5

]^Aj&
]^Ai&

5d i j ~38!

and

LFP
† a050. ~39!

Finally, Eq. ~36! together with the last equations we ha
just derived yields equations of motion for the variation
parametersa i ,

da i

dt
52(

j 51

M

a j

]^LFP
† Aj&

]^Ai&
1

]D@W#

]^Ai&
~ i 51, . . . ,M !,

~40!

which, together with the equations of motion~34! for the
mean values of theAi , determine the temporal evolution o
bothW andA(x,t). Summing up, starting from a variationa
principle that leads to the FP equation, we have obtained
approximate FP solutionWvariat in terms of the set of pa
rameters~32!.

IV. MINIMUM ENTROPY APPROACH
TO THE FP EQUATION

A. The time-dependent minimum entropy ansatz

We now focus our attention upon a particular parame
zation of the probability distributionW in terms ofM rel-
evant mean values. The time evolution of a set ofM appro-
priate relevant mean values^Ai& is given by

d

dt
^Ai&5^LFP

† Ai& ~ i 51, . . . ,M !. ~41!

We will evaluate the right-hand side of the above eq
tions by employing the Kullback minimum entropy ansatz
l

an

i-

-

WMK~x,t !5
1

Z
W0~x,t !expH 2(

i 51

M

l i~ t !Ai~x!J . ~42!

It is clear thatWMK is determined, at each instant, by th
instantaneous values adopted by the relevant mean va
^Ai&, which are taken as constraints in the extremalization
K. Hence the approximate minimum entropy soluti
WMK(x,t) is constructed in such a way as to satisfy the eq
tions of motion ~41! of the M relevant mean values. O
course, in this approximate procedure the time evolution
pends on the temporal behavior of the Lagrange multipli
l i(t), and we need to ascertain their functional depende
on time.

Furthermore, we have noted above that, in order to
velop confidence in the approximate procedures, we nee
ascertain that the temporal evolution of the Kullback entro
one constructs with the approximate FP solution behave
the correct fashion. We tackle this question first.

B. Time derivative of Kullback’s entropy

Let us now consider the time derivative of the Kullba
entropy KMK evaluated on the approximate minimum e
tropy solutionWMK(x,t). The time derivative of Kullback
relative entropy is given by

dKMK

dt
52E F(

i 51

M
]WMK

]^Ai&

d^Ai&
dt G lnS WMK

W0
Ddx

1E ]W0

]t S WMK

W0
Ddx, ~43!

which can be rewritten as

dKMK

dt
5(

i 51

M
]K

]^Ai&

d^Ai&
dt

1E ]W0

]t S WMK

W0
Ddx, ~44!

where the partial derivatives of the relative entropy with
spect to the mean values are to be taken at fixedW0 ~i.e., at
a given time!. By recourse to the equations of motion of th
relevant mean values and the thermodynamic relations~15!,
Eq. ~44! can be recast as

dKMK

dt
5E WMKH LFP

† S (
i 51

M

l iAi~x!D J dx

1E ]W0

]t S WMK

W0
Ddx, ~45!

which easily leads to

dKMK

dt
52E ~LFKWMK!F S 2(

i 51

M

l iAi~x!D 1 ln~Z21!Gdx

1E ]W0

]t S WMK

W0
Ddx. ~46!

From the form of the maximum entropy ansatz, it is no
clear that the time derivative of the relative entropy, eva
ated on the minimum entropy approximate solutionWMK , is
given by
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dKMK

dt
52E ~LFPWMK!lnS WMK

W0
Ddx1E ]W0

]t S WMK

W0
Ddx

5D@WMK#. ~47!

We see that the functional relation between the time
rivative of K and the approximate minimum entropy solutio
WMK is exactly the same as that of the time derivative of
relative entropy in terms of anexactsolution of the FP equa
tion @see Eq.~16!#. In the special case of a prior distributio
W0(x,t), which is an exact solution of the FP equation, th
result has the important consequence thatour minimum en-
tropy ansatz WMK(x,t) verifies the same H theorem satisfi
by the exact solution.

C. Equations of motion for the Lagrange multipliers

The equations of motion for theM Lagrange multipliers
l i are

dl i

dt
5(

j 51

M
]l i

]^Aj&

d^Aj&
dt

1
]l i

]t

5(
j 51

M
]l j

]^Ai&

d^Aj&
dt

1
]l i

]t
5

]

]^Ai&
H (

j 51

M

l j

d^Aj&
dt J

2(
j 51

M

l j

]^LFP
† Aj&

]^Ai&
1

]l i

]t
, ~48!

where the partial derivatives with respect to the mean va
^Ai& are evaluated at fixedW0 ~i.e., at a given time!, while
the partial time derivatives of the Lagrange multipliers a
taken at fixed values of theM momentŝ Ai& ~i.e., they de-
scribe the changes in thel ’s due to the explicit time depen
dence of the prior distributionW0(x,t); this time dependence
implies that thel ’s will change even if the relevant momen
remain fixed!.

With the same conventions for the partial derivatives
have

]D@WMK#

]^Ai&
5

]

]^Ai&
FdKMK

dt G5
]

]^Ai&
F (

j 51

M

l j

d^Aj&
dt G1

]l i

]t
.

~49!

From the above expressions we arrive at the equation
motion for thel ’s

dl i

dt
52(

j 51

M

l j

]^LFP
† Aj&

]^Ai&
1

]D@WMK#

]^Ai&
. ~50!

We can see that these equations of motion for the Lagra
multiplierscoincidewith the equations of motion~40! for the
parametersa i , derived from the variational principle base
on the action~19!.

Summing up, we tried to build an approximate minimu
entropy approach to the FP equation based upon the ide
approximately closing the set of equations~41! with the help
of the minimum entropy form~42!. We find that this Kull-
back minimum entropy ansatz for the distribution function
-

e

s

e

of

ge

of

identical to the one obtained in Sec. III from the action vari
tional principle if we identify the parametersa i with the
Lagrange multipliersl i .

D. Hamiltonian structure

Defining the Hamiltonian

H~l1 , . . . ,lM ,^A1&, . . . ,̂ AM&!

5(
i 51

M

l i^LFP
† Ai&2D@W~^A1&, . . . ,̂ AM&!#, ~51!

the equations of motion for the relevant mean values^Ai&
and for the corresponding Lagrange multipliersl i can be
cast into the Hamiltonian form

d^Ai&
dt

5
]H
]l i

~52!

and

dl i

dt
52

]H
]^Ai&

. ~53!

We see that the relevant mean values and the Lagrange
tipliers are conjugate variables not only in Jaynes’s therm
dynamical sense, but also in a Hamiltonian sense. In
definition of the Hamiltonian~51!, the quantitieŝ LFP

† Ai&
andD@W# are regarded as functions of theM relevant mean
values. Furthermore, the relevant mean values^Ai& and the
Lagrange multipliersl i are regarded as independent va
ables. However, of all the possible solutions

$^Ai&~ t !,l i~ t !% ~ i 51, . . . ,M !, ~54!

of the Hamiltonian equations~52! and ~53!, only those with
initial conditions satisfying the relations

^Ai&~ t0!5E Ai~x!Z21expS 2(
i 51

M

l i~ t0!Ai~x!D
~ i 51, . . . ,M ! ~55!

are relevant to our problem. The relations~55! determine an
M -dimensional hypersurface embeded in the 2M -dimen-
sional phase space of our Hamiltonian system. It is clear
this hypersurface is an invariant set of the equations of m
tion ~52! and~53!. This means that a solution to these equ
tions with initial conditions on this hypersurface will alway
remain on that subset of the phase space.

V. PARTICULAR CASES

A. Gibbs-Shannon-Jaynes entropy

If we take as the prior distribution the uniform probabili
distribution, the relative Kullback measure reduces~up to an
additive constant! to the usual Gibbs-Shannon-Jaynes e
tropy. As observed above, our approach should in this c
translate itself into the one provided by Jaynes’s maxim
entropy principle~MEP! ~as applied to the FP equation!.
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Here we make the connection with the approximate ma
mum entropy scheme proposed by Hick and Stevens@12# to
deal with the FP equation and, in particular, with the cosm
ray transport equation. Their approach is seen to constitu
particular instance of the one advanced in the present pa
Including convection and pitch angle scattering, the cos
ray transport equation@12# in a ~spatially! one-dimensional
geometry is

] f

]t
5

1

2
n

]

]m
~12m2!

] f

]m
2mv

] f

]x
, ~56!

where f (x,m,t) is the particle distribution function,v is the
particle velocity,m5 v̂• x̂ is the cosine of the pitch angle, an
n is the scattering frequency.

HS have obtained numerical results that clearly show
the maximum entropy approach can profitably be employ
They argue that the success of the method can be part
justified by the fact that, for exact solutionsf (x,m,t) of the
transport equation, it can be shown that

dS

dt
5

1

2
nE

2`

1`

dxE
21

11

dm
12m2

f S ] f

]m D 2

.0, ~57!

so that the entropyS is a monotonically increasing functio
of time.

From our analysis of the time derivative of Kullback
information it follows that, in the particular case of Sha
non’s entropy,the functional relation between dS/dt and the
distribution function is, for the MEP solution, the same
for the exact solution. In particular, we proved in analytica
fashion that, if the exact solutions satisfy anH theorem~i.e.,
the entropy is a monotonically increasing function of tim!,
then the maximum entropy solutions verifiesthe same H
theorem. Concrete and tangible analytical support for the H
argument, which was based primarily on numerical eviden
is thus provided by the present considerations.

B. Generalized Liouville equation

If the diffusion tensor$Di j (x)% vanishes, the FP equatio
reduces to the Liouville equation

]W~x,t !

]t
1(

i 51

M
]

]xi
@WDi~x!#5

]W~x,t !

]t
1“•~WVD!50,

~58!

where

“5S ]

]x1
, . . . ,

]

]xN
D ~59!

stands for theN-dimensional nabla symbol. The above Lio
ville equation describes the time evolution of a statisti
ensemble of identical dynamical systems, each evolving
cording to a flux in phase space given by the vector fi
VD(x). The time evolution of each member of the ensem
is given by the system of ordinary differential equations

dx

dt
5VD~x!. ~60!
i-

c
a

er.
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d.
lly

e,

l
c-
d
e

Note that the Liouville equation~58! is more general than
the one presented in most textbooks of classical mechan
Liouville’s equation is usually associated with Hamiltonia
systems, but the equation originally introduced by Liouvi
@33# is of the form~58!, and corresponds to a more gene
situation and applies to arbitrary dynamical systems. Ham
tonian systems belong to the family of dynamical syste
with divergenceless phase space flows

“•VD50, ~61!

in which case the Liouville equation adopts the form

]W~x,t !

]t
1VD•“W50. ~62!

The study of the general Liouville equation is importa
in order to apply the ideas of statistical mechanics to n
Hamiltonian systems@34–37,39#. In particular, two of us
have recently shown that Jaynes’s approach to statistical
chanics can be applied to general dynamical systems
divergenceless flows in phase space@11#. In addition to
Hamiltonian systems, this family encompasses other inter
ing cases, such as Nambu systems@38# and Bialynicky-
Birula–Morrison dynamical systems@40#. Our present re-
sults, in the particular case of vanishing diffusion tens
imply that the maximum entropy approach can be applied
solve approximately the Liouville equation for general d
namical systems, even if they have a nonvanishing ph
flow divergence.

C. Closed linear equations of motion
for the relevant mean values

Our maxent approach to the FP equation simplifies c
siderably in the case that the mean values^LFP

† Ai& can be
expressed as a linear combination of the relevant mean
ues^Ai&,

^LFP
† Ai&5(

j 51

M

gi j ^Aj& ~ i 51, . . . ,M !. ~63!

In such cases, the relevant mean values evolve according
closed linear system of ordinary differential equations

d^Ai&
dt

5(
j 51

M

gi j ^Aj& ~ i 51, . . . ,M ! ~64!

that can be solvedin an exact fashion. Such a closure rela
tion holds, for example, if we have a linear drift

Di~x!5(
j 51

N

ai
jxj1ai

0 , ~65!

a quadratic diffusion tensor

Di j ~x!5 (
k,l 51

N

bi j
klxkxl1 (

k51

N

ci j
k xk1ci j

0 , ~66!

and we chose as relevant mean values the set of linear
quadratic moments
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^xi&,^xixj& ~ i , j 51, . . . ,N!. ~67!

D. Exact solution as prior distribution

An interesting possibility is that of choosing as the pr
distribution a particular known solutionW0(x,t) of the FP
equation. In that case, the time derivative of the entropy~of
the approximate maxent solutionWMK) is

dKMK

dt
52E LFPWMKlnS WMK

W0
Ddx1E LFPW0S WMK

W0
Ddx,

~68!

which after some algebra can be put in the form

dKMK

dt
5E WMK

3

W0
2

Di j

]

]xi
S WMK

W0
D ]

]xj
S WMK

W0
Ddx. ~69!

If the diffusion tensor is not zero we have

dKMK

dt
.0 ~70!

sinceDi j is a positive-definite matrix. For the FP equation
natural choice for the prior distribution is a stationary so
tion W0(x), which usually is easier to obtain than a particu
time-dependent solution.

VI. CONCLUSION

In the present effort we have considered a minimum
tropy approach to obtain approximate, time-dependent s
tions to theN-dimensional Fokker-Planck equation, in th
general context of Kullback’s relative entropy. This meth
has been applied previously for solving the Liouville equ
tion for Hamiltonian systems and recently generalized to
family of dynamical systems with divergenceless pha
space flow, albeit employing only the Gibbs-Shannon-Jay
entropy. Some particular applications of Jaynes’s MEP
proach to the FP equation have also been discussed in
literature. In particular, the method has been successfully
plied to the cosmic ray transport equation. However, t
approach to the FP equation has so far been justified onl
the basis of the analysis of particular numerical examples
the present paper we have provided, within the context o
minimum Kullback information approach, some general a
lytical results that hold even if we employ the Gibb
Shannon-Jaynes entropy since the latter is nothing more
a particular case of the more general Kullback one.

We have shown that the minimum Kullback approach c
be derived from a variational principle and we obtained
equations of motion for the Lagrange multipliers associa
with the relevant mean values. We have also shown that
equations of motion for the relevant mean values and
concomitant Lagrange multipliers exhibit a Hamiltonia
n

-
r

-
u-

-
e
-

es
-

the
p-
s
on
In
a
-

an

n
e
d
he
e

structure, the latter being canonical conjugate to the form
We proved that the functional relation between the tim

derivative of the Kullback entropy and the approxima
minimum entropy solution is the same as in the case of
exact solutions. Hence, whenever the exact solutionsW(x,t)
satisfy anH theorem@with respect to the prior distribution
W0(x,t)#, the minimum entropy solutionsWMK(x,t) satisfy
the same H theorem.

In the particular case of diffusionlike equations, th
Gibbs-Shannon-Jaynes entropy is a monotonically increa
function of time. If within our scheme a constant prior di
tribution is used, we obtain approximate~Jaynes! MEP solu-
tions with the same property. Thus it is here asserted tha~i!
we analytically proved that the entropy of the approxima
MEP solutions considered by Hick and Stevens for the c
mic ray transport equation increases with time and~ii !
dS/dt, expressed in terms of the MEP solutionWME(x,t), is
given by an expression identical to that corresponding to
exact solutions.

In the general case of the FP equation, the Gib
Shannon-Jaynes entropy does not~in general! behave mono-
tonically with time. However, the time derivative of th
Kullback relative entropy between two solutions of the F
equation has a definite sign~i.e., it obeys anH theorem!. If
within our minimum entropy scheme we adopt as a pr
distribution a known solution of the FP equation, then t
~Kullback! minimum entropy approximate solution wi
verify the sameH theorem.

In the particular case of a vanishing diffusion tensor, t
FP equation reduces to the general Liouville equation
scribing the evolution of a statistical ensemble of identi
dynamical systems~with different initial conditions!. In a
previous work two of us showed that Jaynes’s approach
be implemented in the case of dynamical systems with div
genceless flows. The present effort, within the framework
Kullback’s minimum entropy principle, generalizes those
sults to the case of arbitrary dynamical systems.

Summing up, the present considerations unify and gen
alize previous work related to the information theory a
proach to the Liouville and FP equations. Numerical app
cations of this method to particular instances exist in
literature. In the case of Liouville’s equation, for Hami
tonian and divergenceless dynamical systems, some ana
cal results are also available. We have extended all th
results to theN-dimensional Fokker-Planck equation, with
the more general framework of Kullback’s minimum entro
prescription.

ACKNOWLEDGMENTS

The financial support of the Foundation for Research D
velopment is gratefully acknowledged. A.P. gratefully a
knowledges partial support from Argentina’s National R
search Council~CONICET!.
in
@1# A. I. Khinchin, Mathematical Foundations of Informatio
Theory~Dover, New York, 1957!.

@2# E. T. Jaynes, Phys. Rev.106, 620 ~1957!.
@3# E. T. Jaynes, Phys. Rev.108, 171 ~1957!.
@4# E. T. Jaynes, inStatistical Physics, edited by W. K. Ford~Ben-
jamin, New York, 1963!.

@5# E. T. Jaynes inMaximum Entropy and Bayesian Methods
Science and Engineering, Vol. 1: Foundations, edited by G. J.



,

-

y

v

A

ev

s

v

v.

A

.

s

3934 56A. R. PLASTINO, H. G. MILLER, AND A. PLASTINO
Erikson and C. Ray Smith~Kluwer, Dordrecht, 1988!.
@6# A. Katz, Statistical Mechanics~Freeman, San Francisco

1967!.
@7# A. Hobson, Concepts in Statistical Mechanics~Gordon and

Breach, London, 1971!.
@8# R. Balian,From Microphysics to Macrophysics~Springer, Ber-

lin, 1992!.
@9# W. Grandy, Foundations of Statistical Mechanics~Reidel,

Dordrecht, 1987!.
@10# H. Grabert,Projection Operator Techniques in Nonequilib

rium Statistical Mechanics~Springer, Berlin, 1982!.
@11# A. R. Plastino and A. Plastino, Physica A232, 458 ~1996!.
@12# P. Hick and G. Stevens, Astron. Astrophys.172, 350 ~1987!.
@13# J. Baker-Jarvis, M. Racine, and J. Alameddine, J. Math. Ph

~N.Y.! 30, 1459~1989!.
@14# Y. Alhassid and R. Levine, J. Chem. Phys.67, 4321~1977!.
@15# Y. Alhassid and R. Levine, Phys. Rev. A18, 89 ~1978!.
@16# D. Otero, A. Plastino, A. N. Proto, and G. Zannoli, Phys. Re

A 26, 1209~1982!.
@17# D. Otero, A. Plastino, A. N. Proto, and G. Zannoli, Z. Phys.

316, 323 ~1984!.
@18# N. Z. Tishby and R. D. Levine, Phys. Rev. A30, 1427~1984!.
@19# E. Duering, D. Otero, A. Plastino, and A. N. Proto, Phys. R

A 32, 2455~1985!.
@20# R. Levine, D. Otero, A. Plastino, and A. N. Proto, Nucl. Phy

A 454, 338 ~1986!.
@21# D. Otero, A. Plastino, A. N. Proto, and S. Misrahi, Phys. Re

A 33, 3446~1986!.
s.

.

.

.

.

@22# E. Duering, D. Otero, A. Plastino, and A. N. Proto, Phys. Re
A 35, 2314~1987!.

@23# R. Balian and M. Veneroni, Ann. Phys.~N.Y.! 164, 334
~1985!.

@24# R. Balian and M. Veneroni, Ann. Phys.~N.Y.! 174, 229
~1987!.

@25# R. Balian and M. Veneroni, Ann. Phys.~N.Y.! 187, 29 ~1988!.
@26# J. Aliaga, D. Otero, A. Plastino, and A. N. Proto, Phys. Rev.

37, 918 ~1988!.
@27# H. Risken,The Fokker-Planck Equation~Springer, New York,

1989!.
@28# S. Kullback, Information Theory and Statistics~Wiley, New

York, 1959!; S. Kullback and R. A. Leibler, Ann. Math. Stat
22, 79 ~1951!.

@29# W. K. Wootters, Phys. Rev. D23, 357 ~1981!.
@30# S. M. Brunstein and C. M. Caves, Phys. Rev. Lett.72, 3439

~1994!.
@31# M. Ravicule, M. Casas, and A. Plastino, Phys. Rev. E~to be

published!.
@32# P. Morse and H. Feshbach,Methods of Theoretical Physic

~McGraw-Hill, New York, 1953!.
@33# J. Liouville, J. Math. Pure Appl.3, 342 ~1838!.
@34# L. Andrey, Phys. Lett.111A, 45 ~1985!.
@35# W.-H. Steeb, Physica A95, 181 ~1979!.
@36# L. Andrey, Phys. Lett.114A, 183 ~1986!.
@37# E. Kerner, Phys. Lett. A151, 401 ~1990!.
@38# Y. Nambu, Phys. Rev. D7, 2405~1973!.
@39# S. Codrianskyet al., J. Phys. A27, 2565~1994!.
@40# I. Bialynicki-Birula and P. Morrison, Phys. Lett. A158, 453

~1991!.


